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Jones polynomial

Given an oriented link L in R3 (or equivalently S3), Jones introduced a
polynomial invariant in 1984:

V(L) ∈ Z[t1/2, t−1/2].

L− L+ L0

Definition
V(unknot) := 1;
t−1V(L+)− tV(L−) = (t1/2 − t−1/2)V(L0).
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Examples

(a) The trefoil knot. (b) The positive Hopf link.

V(trefoil) = t + t3 − t4;
V(positive Hopf link) = −(t1/2 + t5/2),
V(negative Hopf link) = −(t−1/2 + t−5/2).
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Jones polynomial

Question
Does the Jones polynomial detect the unknot? Or equivalently, is the
Jones polynomial of a nontrivial knot always different from that of the
unknot?

Still open. No counter-example among knots up to 24 crossings
(Tuzun and Sikora, 2020).
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Categorification

Replace numerical invariants with category-theoretic invariants (e.g.
functors).

Examples in topology
Euler characteristic, Betti numbers (co)homology;

Casson invariants for 3-manifolds instanton Floer homology;
Alexander polynomial (Heegaard, instanton, monopole) knot
Floer homology;
Jones polynomial Khovanov homology.
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Kauffman bracket

L2 L1 L0

Definition
Let U be the unknot.

〈U〉 = 1

〈U t L〉 = (q + q−1)〈L〉
〈L2〉 = 〈L0〉 − q〈L1〉
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Kauffman bracket

Kauffman’s definition of the Jones polynomial

Given a link L, let J(L)(q) = V(L)−t1/2=q ∈ Z[q, q−1]. Then

J(L)(q) = (−1)n−qn+−2n−〈L〉

where n+ and n− denote the numbers of positive and negative
crossings of the diagram of L.

If we replace the first equation with 〈U〉 = q + q−1 then we obtain the
unnormalized Jones polynomial Ĵ(L) = (q + q−1)J(L).
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Khovanov homology

In order to define the Khovanov homology, we need to categorify
the definition of the Kauffman bracket.

Let V := Z{v+, v−} with qdeg v− = −1, qdeg v+ = 1.
Define

JUK = 0→ V → 0

JU t LK = V ⊗ JLK

JL2K = Cone(JL0K
d−→ JL1K{1}])

where {1} means we increase the q-grading of the chain complex
by 1.
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Khovanov homology

Suppose the diagram D of L has N crossings. Given any
c ∈ {0, 1}N , we could smooth all the crossings of D to obtain a
collection of circles Dc in R2;

Assign V to each circle in Dc and let V(Dc) be the tensor product
of these copies of V;
For each vertex of the N-dimensional cube, we have an abelian
group V(Dc). For each edge of the cube, we want to define a map
dcc′ : V(Dc)→ V(Dc′) where c and c′ differs at only one crossing;
In this way, we obtain a chain complex

(C(D), d) = (
⊕

c

V(Dc),
∑
c,c′

dcc′)
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Figure: The 4 smoothings of the Hopf link.

V ⊗ V ∇ //

∇
��

V

∆
��

V
−∆ // V ⊗ V
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Khovanov homology

The multiplication and comultiplication on V

∇ : V ⊗ V → V ∆ : V → V ⊗ V

v+ ⊗ v± 7→ v± v+ 7→ v+ ⊗ v− + v− ⊗ v+

v± ⊗ v+ 7→ v± v− 7→ v− ⊗ v−
v− ⊗ v− 7→ 0

Define d using the multiplication or the comultiplication on W;
Define Kh(L) := H(JLK[−n−]{n+ − 2n−}). We use Khi,j(L) to
denote the summand with h-degree i and q-degree j.

Theorem (Khovanov, 2000)

The homology group Khi,j(L) does not depend on the choice of the
diagram of L.
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Khovanov homology

It can be seen from the definition that

χq(Kh(L)) :=
∑

i,j

(−1)iqj rank Khi,j(L) = Ĵ(L).

Replace the first rule in the definition with JUK = 0→ Z→ 0, then
we obtain the reduced Khovanov homology Khr(L) satisfying
χq(Khr(L)) = J(L).

Examples

Kh(n component unlink) = (Z(0,1) ⊕ Z(0,−1))
⊗n.

Khr(positive Hopf link) = Z(0,1) ⊕ Z(2,5),
Kh(positive Hopf link) = Z(0,0) ⊕ Z(0,2) ⊕ Z(2,4) ⊕ Z(2,6).

Khr(trefoil) = Z3, Kh(trefoil) = Z4 ⊕ Z/2.

Yi Xie (Peking University) Khovanov skein homology for links in the thickened torus 12 / 25



Khovanov homology

It can be seen from the definition that

χq(Kh(L)) :=
∑

i,j

(−1)iqj rank Khi,j(L) = Ĵ(L).
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Properties and Applications

Khovanov homology detects the unknot (Kronheimer-Mrowka,
2011), trefoil knot (Baldwin-Sivek, 2018), figure eight knot
(Baldwin-Dowlin-Levine-Lidman-Sazdanovic, 2020), the torus knot
T2,5 (Baldwin-Hu-Sivek, 2021);

Conway knot is not slice (Piccirillo, 2018);
Possibly verify potential counter-examples of 4-dimensional
Poincaré conjecture (Freedman-Gompf-Morrison-Walker,
Manolescu-Piccirillo).
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Asaeda-Przytycki-Sikora’s generalization

How about links in a general 3-manifold?

Asaeda, Przytycki and Sikora generalized Khovanvov’s definition
to I-bundles over compact surfaces (possibly with boundary);
We will focus on (−1, 1)× Σ where Σ is an orientable compact
surface.
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Annular Khovanov homology

Consider links in (−1, 1)× A where A is an annulus. We can
resolve crossings of L to obtain a collection of circles in A.

Two type of circles: trivial circles (that bound disks) and
homologically non-trivial circles;

Assign V = Z{v+, v−} to a trivial circle and W = Z{w+,w−} to a
non-trivial circles (qdeg w± = ±1).
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Annular Khovanov homology

Differentials
Two trivial circles merge into a trivial circle or a trivial circle splits
into two trivial circles: the maps V ⊗ V → V and V → V ⊗ V are the
same as before;

A trivial circle and a non-trivial circle merge into a non-trivial circle
(or the other way around):

V ⊗W → W W → V ⊗W

v+ ⊗ w± 7→ w± w+ 7→ w+ ⊗ v−
v− ⊗ w± 7→ 0 w− 7→ w− ⊗ v−
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Annular Khovanov homology

Figure: Two non-trivial circles merge into a trivial circle in an annulus

Yi Xie (Peking University) Khovanov skein homology for links in the thickened torus 17 / 25



Annular Khovanov homology

Differentials
Two non-trivial circles merge into a trivial circle (or the other way
around):

W ⊗W → V V → W ⊗W

w± ⊗ w± 7→ 0 v+ 7→ w+ ⊗ w− + w− ⊗ w+

w± ⊗ w∓ 7→ v− v− 7→ 0

An extra grading: fdeg v± = 0, fdeg w± = ±1. All the differentials
preserves the f-grading!
The annular Khovanov homology (AKh) is triply graded:
h-grading, q-grading, f-grading.
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Torus case

Given a link L in (−1, 1)× T where T is a torus. We can resolve
crossings of L to obtain a collection of circles in T.

C := {essential simple closed curves in T2}/isotopy;
Given a trivial circle in T2, we assign the space V to it as before;
Given a nontrivial circle γ in T2, we assign
W([γ]) = Z{w+([γ]),w−([γ])};
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Torus case

The differential is defined in a similar way as the annular
Khovanov homology case;

Given any [γ] ∈ C, we have a Z-grading deg[γ] defined by requiring
deg[γ] w±([γ]) = ±1 and deg[γ] = 0 on all the other generators;

The homology TKh(L) for a link L in (−1, 1)× T2 is
Z2 ⊕ ZC-graded.

Yi Xie (Peking University) Khovanov skein homology for links in the thickened torus 20 / 25



Torus case

The differential is defined in a similar way as the annular
Khovanov homology case;
Given any [γ] ∈ C, we have a Z-grading deg[γ] defined by requiring
deg[γ] w±([γ]) = ±1 and deg[γ] = 0 on all the other generators;

The homology TKh(L) for a link L in (−1, 1)× T2 is
Z2 ⊕ ZC-graded.

Yi Xie (Peking University) Khovanov skein homology for links in the thickened torus 20 / 25



Torus case

The differential is defined in a similar way as the annular
Khovanov homology case;
Given any [γ] ∈ C, we have a Z-grading deg[γ] defined by requiring
deg[γ] w±([γ]) = ±1 and deg[γ] = 0 on all the other generators;

The homology TKh(L) for a link L in (−1, 1)× T2 is
Z2 ⊕ ZC-graded.

Yi Xie (Peking University) Khovanov skein homology for links in the thickened torus 20 / 25



Detection properties

Theorem (Zhang-X )
AKh detects the unlink and braid closures in the thickened
annulus;

TKh detects the unlink and torus links in the thickened torus;
Given [c] ∈ C, the ZC-grading of TKh(L) is supported in Z{[c]} if
and only if L is disjoint from (−1, 1)× c after isotopy.
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Instanton Floer homology

Suppose L is a link in a (oriented) 3-manifold Y, I(Y,L) denotes
the instanton Floer homology;

Suppose Σ ⊂ Y is a closed oriented surface, then a linear
operator µ(Σ) on I(Y,L) can be defined and only depends on the
homology class of Σ;
Define xL(Σ) := max{0,−χ(Σ) + |Σ ∩ L|};
Given α ∈ H2(Y,Z), define its Thurston norm
xL(α) := min[Σ]=α xL(Σ).

Theorem
A connected surface Σ ⊂ Y is norm-minimizing if and only if

E(I(Y,L), µ(Σ), 2g(Σ)− 2 + |Σ ∩ L|) 6= 0

.
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Instanton Floer homology

Given L ⊂ (−1, 1)× T2, we define THI(L) := I(S1 × T2,L);

Given a simple closed curve c ⊂ T2, we can define a Z-grading on
THI(L) using µ(S1 × c);
The ZC-grading on TKh(L) descends to a Z-grading under the
map [γ] 7→ γ · c.

Proposition
There is a spectral sequence from TKh(L) to THI(L) which preserves
the c-grading.
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Sketch of the proof of the last part of the main theorem

Given L ⊂ (−1, 1)× T2, suppose the ZC grading of TKh(L) is
supported at Z{[c]};

Then the c-grading of TKh(L) is supported at 0;
By the spectral sequence, the c-grading of THI(L) is supported at
0;
Using the Thurston norm detection property of instanton Floer
homology, we could find a norm 0 surface Σ whose homology
class is [S1 × c]. In particular, Σ is a torus.
Σ can be isotoped to S1 × c.
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Thanks!
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