Beijing-Saint Petersburg Mathematics Colloquium (online)
Abstract
We study a dynamical system modeling an iterative process of choice in a group of agents between two possible results. The studied model is based on the principle of bounded confidence introduced by Hegselmann and Krause. According to this principle, at each step of the process, any agent changes his/her opinion being influenced by agents with close opinions. The resulting dynamical system is nonlinear and discontinuous.
We study both cases of finite and infinite groups of agents. We are mostly interested in the structure and stability of fixed points of the system and in conditions under which any positive trajectory tends to a fixed point.
Bio
Sergei Yu. Pilyugin is Former vice President of Saint Petersburg Mathematical Society, he is a professor at Faculty of Mathematics and Computer Science, St. Petersburg State University, Russia. His research interests are in dynamical systems (especially theory of attractors and shadowing theory) and in applications (including sociological models).