Recording: https://disk.pku.edu.cn:443/link/81DAD6E74DECF04671D52DC6DE859B3F
Valid Until: 2027-06-30 23:59
Abstract: Integrals of motion for finite-dimensional systems can be obtained using the brute force method, symmetries of configuration space, relations with nonlinear evolution equations, using Lax matrices, methods of bi-Hamiltonian geometry, etc. In this talk, we discuss a new combination of Nether's symmetry method with the brute force method that allows us to get three new families of integrable systems in n-dimensional Euclidean space. A few of such systems are related to the Hermitian symmetric space theory and to the multi component nonlinear Schrodinger equations hierarchy.
Bio: Andrey Tsiganov is a Professor at the Department of Computational Physics, St. Petersburg State University. He graduated from St. Petersburg State University in 1980 and obtained Doctor of Sciences degree in 2003. Prof. Tsiganov’s research focuses on mathematical physics, integrable systems of classical and quantum physics, etc.