您现在的位置: 首页» 日历

日历

MENU

Geometric methods to solving Schläfli differential equations

  • 主讲人:A.D. Mednykh (Sobolev Institute of Mathematics of RAS)
  • 举办方: Beijing-Saint Petersburg Mathematics Colloquium
  • 时间: 2023-05-11 21:00 - 2023-05-11 22:00
  • 地点: online

Recording: https://disk.pku.edu.cn:443/link/CA626B9C285F1BD1B7E7508A374BA1B0
Valid Until: 2027-06-30 23:59

 

Abstract: 

[1] Д.А. Деревнин, А.Д. Медных, Объем куба Ламберта в сферическом пространстве // Матем. заметки, Т. 86, вып. 2 (2009), 190-201.
[2] N. Abrosimov, A. Mednykh, Volumes of Polytopes in Spaces of Constant Curvature // Fields Inst. Commun., Vol. 70 (2014),  1-26.
[3] N. Abrosimov, A. Mednykh, Geometry of knots and links // IRMA Lectures in Mathematics and Theoretical Physics, Vol. 33, Topology and Geometry, (2021),  433-454. 
[4] A.D. Mednykh, Volumes of two-bridge cone-manifolds in spaces of constant curvature // Transform Groups, Т. 26, вып. 2 (2021), 601-629.

 

Bio: Alexander Mednykh is a Principal Researcher and the Head of the Laboratory of Complex Analysis at Sobolev Institute of Mathematics. He is also a Professor and the Head of Chair at the Department of Mathematics of Novosibirsk State University. His fields of interest are Complex Analysis, Riemann Surface Theory, Discrete Groups, Geometry of Three-Manifolds, Knot Theory, Graph Theory and Combinatorics. He graduated from Novosibirsk State University in 1974 and obtained his Ph.D. and Doctor of Science degree in mathematics at the Sobolev Institute of Mathematics. He has 150 publications and 15 defended Ph.D students.

 

 

TOP