您现在的位置: 首页» 日历

日历

MENU

Minimal triangulations of manifolds like projective planes, and their symmetry groups

  • 主讲人:Alexander Gaifullin (Steklov Mathematical Institute of RAS)
  • 举办方: Beijing-Saint Petersburg Mathematics Colloquium
  • 时间: 2023-12-21 21:00 - 2023-12-21 22:00
  • 地点: online

Recording: https://disk.pku.edu.cn:443/link/853D07FFF153234977E562A698552C9C
Valid Until: 2025-01-15 23:59

 

Abstract: A theorem by Brehm and Kühnel (1987) says that a d-dimensional combinatorial manifold K (without boundary) with n vertices is PL homeomorphic to the sphere, provided that n is less than 3d/2+3. Moreover, if n is equal to 3d/2+3, then K  is PL homeomorphic to either the sphere or a manifold like a projective plane, which exist in dimensions 2, 4, 8, and 16 only. There exists a 6-vertex triangulation of the real projective plane (the quotient of the boundary of regular icosahedron by the antipodal involution), a 9-vertex triangulation of the complex projective plane (Kühnel, 1983) and 15-vertex triangulations of the quaternionic projective plane (Brehm and Kühnel, 1992). Recently the speaker has constructed first examples of 27-vertex triangulations of manifolds like the octonionic projective plane and a lot of new 15-vertex triangulations of the quaternionic projective plane. I will speak about these results and also about symmetry groups of these traingulations.

 

Bio: Alexander Gaifullin is the Correspondent Member of the Russian Academy of Sciences, a Principal Researcher of Steklov Mathematical Institute of RAS, a Professor of Lomonosov Moscow State University (Faculty of Mechanics and Mathematics), and a Professor of Skolkovo Institute of Science and Technology. He was an invited speaker at the European Congress of Mathematics in 2012 and a plenary speaker at the European Congress of Mathematics in 2016. Alexander Gaifullin graduated from Moscow State University in 2005, defended his PhD thesis in 2008 (supervisor: Prof. Buchstaber), and doctoral thesis in 2010. 

 

TOP